Mixed Finite Element Methods for Problems with Robin Boundary Conditions

نویسندگان

  • Juho Könnö
  • Dominik Schötzau
  • Rolf Stenberg
چکیده

We derive new a-priori and a-posteriori error estimates for mixed nite element discretizations of second-order elliptic problems with general Robin boundary conditions, parameterized by a non-negative and piecewise constant function ε ≥ 0. The estimates are robust over several orders of magnitude of ε, ranging from pure Dirichlet conditions to pure Neumann conditions. A series of numerical experiments is presented that verify our theoretical results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Collocation Method with Modified Equilibrium on Line Method for Imposition of Neumann and Robin Boundary Conditions in Acoustics (TECHNICAL NOTE)

A collocation method with the modified equilibrium on line method (ELM) forimposition of Neumann and Robin boundary conditions is presented for solving the two-dimensionalacoustical problems. In the modified ELM, the governing equations are integrated over the lines onthe Neumann (Robin) boundary instead of the Neumann (Robin) boundary condition equations. Inother words, integration domains are...

متن کامل

MIXED BOUNDARY VALUE PROBLEM FOR A QUARTER-PLANE WITH A ROBIN CONDITION

We consider a mixed boundary value problem for a quarter-plane with a Robin condition on one edge. We have developed two procedures, one based on the advanced theory of dual integral equations and the other, in our opinion simpler technique, relying on conformal mapping. Both of the procedures are of interest, because the former may be easier to adapt to other boundary value problems.

متن کامل

Modified Fixed Grid Finite Element Method in the Analysis of 2D Linear Elastic Problems

In this paper, a modification on the fixed grid finite element method is presented and used in the solution of 2D linear elastic problems. This method uses non-boundary-fitted meshes for the numerical solution of partial differential equations. Special techniques are required to apply boundary conditions on the intersection of domain boundaries and non-boundary-fitted elements. Hence, a new met...

متن کامل

Application of Decoupled Scaled Boundary Finite Element Method to Solve Eigenvalue Helmholtz Problems (Research Note)

A novel element with arbitrary domain shape by using decoupled scaled boundary finite element (DSBFEM) is proposed for eigenvalue analysis of 2D vibrating rods with different boundary conditions. Within the proposed element scheme, the mode shapes of vibrating rods with variable boundary conditions are modelled and results are plotted. All possible conditions for the rods ends are incorporated ...

متن کامل

Modified Fixed Grid Finite Element Method in the Analysis of 2D Linear Elastic Problems

In this paper, a modification on the fixed grid finite element method is presented and used in the solution of 2D linear elastic problems. This method uses non-boundary-fitted meshes for the numerical solution of partial differential equations. Special techniques are required to apply boundary conditions on the intersection of domain boundaries and non-boundary-fitted elements. Hence, a new met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2011